PL EN
PRACA ORYGINALNA
Cechy mechaniczne układu ząb–cement–wkład koronowo-korzeniowy wykonany ze stopu Co-Cr metodą selektywnego spiekania laserowego
 
Więcej
Ukryj
1
Medical University of Warsaw
 
2
The Silesian University of Technology, Katowice
 
 
Prosthodontics 2014;64(5):317-328
 
SŁOWA KLUCZOWE
 
REFERENCJE (41)
1.
Nałęcz M., Błażewicz S., Stoch L.: Biocybernetyka i inżynieria biomedyczna 2000, Biomateriały – tom 4, Akademicka Oficyna Wydawnicza Exit, 2003.
 
2.
Artopoulou I. I., O’Keefe K. L., Powers J. M.: Effect of core diameter and surface treatment on the retention of resin composite cores to prefabricated endodontic posts. J Prosthodont., 2006, 15, 3, 172-179.
 
3.
Marciniak J.: Austenitic steel: a basic implant material in traumatic and orthopedic surgery. Ortop Traumatol Rehabil., 2000, 2, 2, 52-58.
 
4.
Majewski S., Pryliński M.: Materiały i technologie współczesnej protetyki stomatologicznej. Wydawnictwo Czelej, 2013.
 
5.
Pryliński M., Majewski S.: Rekonstrukcja protetyczna zębów po leczeniu endodontycznym. Wydawnictwo Elamed, 2013.
 
6.
Craig R. G.: Materiały stomatologiczne. Urban &Partner, 2006.
 
7.
Zielińska R., Dejak B., Suchorzewski A.: Porównanie właściwości zębów odbudowanychwkładami koronowo-korzeniowymi lanymi i standardowymi kompozytowymi wzmacnianymi włóknami szklanymi na podstawie piśmiennictwa. Protet. Stomatol., 2010, LX, 1, 37-43.
 
8.
Marciniak J., Kaczmarek M., Ziębowicz A.: Biomateriały w stomatologii. Wydawnictwo Politechniki Śląskiej, 2008.
 
9.
Yamanaka K., Mori M., Chiba A.: Dynamic recrystallization of a biomedical Co–Cr–Wbased alloy under hot deformation. Materials Science and Engineering: A, 2014, 592, comp., 173-181.
 
10.
Yamanaka K., Mori M., Kuramoto K., Chiba A.: Development of new Co–Cr–W-basedbiomedical alloys: Effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Materials&Design, 2014, 55, comp., 987-998.
 
11.
Yoda K., Suyalatu, Takaichi A., Nomura N., Tsutsumi Y., Doi H., Kurosu S., Chiba A.,Igarashi Y., Hanawa T.: Effects of chromium and nitrogen content on the microstructuresand mechanical properties of as-cast Co– Cr–Mo alloys for dental applications. Acta Biomater., 2012, 8, 7, 2856-2862.
 
12.
Özkurt Z., Kazazoğlu E.: Clinical success of zirconia in dental applications. J Prosthodont., 2010, 19, 1, 64-68.
 
13.
Plotino G., Grande N. M., BedinivR., Pameijer C. H., Somma F.: Flexural properties of endodontic posts and human root dentin. Dent Mater., 2007, 23, 9, 1129-1135.
 
14.
Schmitter M., Hamadi K., Rammelsberg P.: Survival of two post systems-five-year results of a randomized clinical trial. Quintessence Int., 2011, 42, 10, 843-850.
 
15.
Stewardson D. A., Shortall A. C., Marquis P. M., Lumley P.J.: The flexural properties of endodontic post materials. Dent. Mater., 2010, 26, 8, 730-736.
 
16.
Fokkinga W.A., Kreulen C.M., Vallittu P.K., Creugers N.H.: A structured analysis of in vitro failure loads and failure modes of fiber, metal, and ceramic post-and-core systems. Int. J. Prosthodont., 2004, 17, 4, 476-82.
 
17.
Newman M. P., Yaman P., Dennison J., Rafter M., Billy E.: Fracture resistance of endodontically treated teeth restored with composite posts. J Prosthet Dent., 2003, 89, 4, 360 -367.
 
18.
Akkayan B., Gülmez T.: Resistance to fracture of endodontically treated teeth restored with different post systems. J Prosthet Dent., 2002, 87, 4, 431-437.
 
19.
Bittner N., Hill T., Randi A.: Evaluation of a one-piece milled zirconia post and core with different post-and-core systems: An in vitro study. J Prosthet Dent., 2010, 103, 6, 369-379.
 
20.
Winder J., Bibb R.: Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg., 2005, 63, 7, 1006-1015.
 
21.
Mazzoli A.: Selective laser sintering in biomedical engineering.Med Biol Eng Comput., 2013, 51, 3, 245-256.
 
22.
Borsuk-Nastaj B., Młynarski M: Zastosowanie technologii selektywnego topienia laserem(SLM) w wykonawstwie stałych uzupełnień protetycznych. Protet. Stomatol., 2012, LXII, 3, 203-210.
 
23.
Gittard S. D., Narayan R. J.: Laser direct writing of micro– and nano-scale medical devices. Expert Rev Med Devices., 2010, 7, 3, 343-356.
 
24.
Eshraghi S., Das S.: Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Acta Biomater., 2012, 8, 8, 3138-3143.
 
25.
Kolan K. C., Leu M. C., Hilmas G. E., Velez M.: Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructsmade by selective laser sintering. J Mech Behav Biomed Mater., 2012, sep., 13, 14-24.
 
26.
Mangano F., Bazzoli M., Tettamanti L., Farronato D., Maineri M., Macchi A., Mangano C.: Custom-made, selective laser sintering (SLS) blade implants as a non-conventional solution for the prosthetic rehabilitation of extremely atrophied posterior mandible. Lasers Med Sci., 2013, 28, 5, 1241-1247.
 
27.
Figliuzzi M., Mangano F., Mangano C.: A novel root analogue dental implant using CTscan and CAD/CAM: selective laser melting technology. Int J Oral Maxillofac Surg., 2012, 41, 7, 858-862.
 
28.
Mangano F. G., Cirotti B., Sammons R. L., Mangano C.: Custom-made, root-analoguedirect laser metal forming implant: a case report. Lasers Med Sci., 2012, 27, 6, 1241-1245.
 
29.
Wu G., Zhou B., Bi Y., Zhao Y.: Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent., 2008, 100, 1, 56-60.
 
30.
Bassir M. M., Labibzadeh A., Mollaverdi F.: The effect of amount of lost tooth structureand restorative technique on fracture resistance of endodontically treated premolars. J Conserv Dent., 2013, 16, 5, 413-417.
 
31.
Heydecke G., Butz F., Strub J. R.: Fracture strength and survival rate of endodonticallytreated maxillary incisors with approximal cavities after restoration with different post and core systems: an in-vitro study. J Dent., 2001, 29, 6, 427-433.
 
32.
Winter W., Karl M.: Dehydration-induced shrinkage of dentin as a potential cause ofvertical root fractures. J Mech Behav Biomed Mater., 2012, 14, 1-6.
 
33.
Watanabe M. U., Anchieta R. B., Rocha E. P., Kina S., Almeida E. O., Freitas A. C. Jr., Basting R. T.: Influence of crown ferrule heights and dowel material selection on the mechanical behavior of root-filled teeth: a finite element analysis. J Prosthodont., 2012, 21, 4,304-311.
 
34.
Clavijo V. G., Reis J. M., Kabbach W., Silva A. L., Oliveira Junior O. B., Andrade M. F.: Fracture strength of flared bovine roots restored with different intraradicular posts. J Appl Oral Sci., 2009, 17, 6, 574-578.
 
35.
Kshirsagar R., Jaggi N., Halli R.: Bite force measurement in mandibular parasymphyseal fractures: a preliminary clinical study. Craniomaxillofac Trauma Reconstr., 2011, 4, 4, 241-244.
 
36.
Rosentritt M., Fürer C., Behr M., Lang R., Handel G.: Comparison of in vitro fracture strength of metallic and tooth-coloured posts and cores. J Oral Rehabil., 2000, 27, 7, 595-601.
 
37.
Rosentritt M., Sikora M., Behr M., Handel G.: In vitro fracture resistance and marginal adaptation of metallic and tooth-coloured post systems. J Oral Rehabil., 2004, 31, 7, 675-681.
 
38.
Maccari P. C., Cosme D. C., Oshima H. M., Burnett L. H. Jr., Shinkai R. S.: Fracture strength of endodontically treated teeth with flared root canals and restored with different post systems. J Esthet Restor Dent., 2007, 19, 1, 30-36.
 
39.
Lassila L. V., Tanner J., Le Bell A. M., Narva K., Vallittu P. K.: Flexural properties of fiber reinforced root canal posts. Dent. Mater., 2004, 20, 1, 29-36.
 
40.
Boschian Pest L., Cavalli G., Bertani P., Gagliani M.: Adhesive post-endodontic restorationswith fiber posts: push-out tests and SEM observations. Dent Mater., 2002, 18, 8, 596-602.
 
41.
Bateman G., Ricketts D. N., Saunders W. P.: Fibre-based post systems: a review. Br Dent J., 2003, 195, 1, 43-48.
 
eISSN:2391-601X
ISSN:0033-1783
Journals System - logo
Scroll to top